Scientists at the University of California, San Francisco have discovered a common genetic driver of aggressive meningioma, which can help clinicians detect this dangerous cancer earlier and find new treatments for these difficult-to-treat tumors. A research team led by Dr. David Raleigh found that increased gene activity called FOXM1 seems to be responsible for the aggressive growth, and these tumors frequently relapse.
To investigate the factors that may lead to aggressive meningioma, Raleigh’s team collected 280 human meningioma samples from 1990 to 2015. Using a range of techniques, including RNA sequencing and targeted gene expression profiling, the researchers searched for links between gene activity and protein production in these tumors and patients’ clinical outcomes. Finally, a gene called FOXM1 was found to be the core of the growth of invasive meningioma, and also an indicator of the subsequent adverse clinical outcomes, including death.
The researchers also discovered a new link between the proliferation of aggressive meningiomas and the activation of intercellular signaling pathways, called Wnt, which usually plays a role in embryonic development and tissue formation. Given that the protein produced by FOXM1 can transmit signals along the Wnt pathway, the new data indicate that the cooperative work of FOXM1 and Wnt pathway may lead to the subsequent proliferation of meningiomas. Hypermethylation may be an early trigger for the formation of aggressive meningiomas.
Raleigh said that future work needs to find out which genes FOXM1 activates to drive meningioma growth, and block these targets with clinical therapies. It is hoped that there will be drugs to stop the pathogenesis of brain tumors in this pathway as soon as possible and benefit the majority of cancer patients.
Susan Hau is a distinguished researcher in the field of cancer cell therapy, with a particular focus on T cell-based approaches and cancer vaccines. Her work spans several innovative treatment modalities, including CAR T-cell therapy, TIL (Tumor-Infiltrating Lymphocyte) therapy, and NK (Natural Killer) cell therapy.
Hau's expertise lies in cancer cell biology, where she has made significant contributions to understanding the complex interactions between immune cells and tumors.
Her research aims to enhance the efficacy of immunotherapies by manipulating the tumor microenvironment and exploring novel ways to activate and direct immune responses against cancer cells.
Throughout her career, Hau has collaborated with leading professors and researchers in the field of cancer treatment, both in the United States and China.
These international experiences have broadened her perspective and contributed to her innovative approach to cancer therapy development.
Hau's work is particularly focused on addressing the challenges of treating advanced and metastatic cancers. She has been involved in clinical trials evaluating the safety and efficacy of various immunotherapy approaches, including the promising Gamma Delta T cell therapy.
- Susan Hauhttps://cancerfax.com/author/susan/
- Susan Hauhttps://cancerfax.com/author/susan/
- Susan Hauhttps://cancerfax.com/author/susan/
- Susan Hauhttps://cancerfax.com/author/susan/