Significant discovery: the aggressiveness of brain tumors is related to the enhancement of gene activity

Share This Post

Scientists at the University of California, San Francisco have discovered a common genetic driver of aggressive meningioma, which can help clinicians detect this dangerous cancer earlier and find new treatments for these difficult-to-treat tumors. A research team led by Dr. David Raleigh found that increased gene activity called FOXM1 seems to be responsible for the aggressive growth, and these tumors frequently relapse.

To investigate the factors that may lead to aggressive meningioma, Raleigh’s team collected 280 human meningioma samples from 1990 to 2015. Using a range of techniques, including RNA sequencing and targeted gene expression profiling, the researchers searched for links between gene activity and protein production in these tumors and patients’ clinical outcomes. Finally, a gene called FOXM1 was found to be the core of the growth of invasive meningioma, and also an indicator of the subsequent adverse clinical outcomes, including death.

The researchers also discovered a new link between the proliferation of aggressive meningiomas and the activation of intercellular signaling pathways, called Wnt, which usually plays a role in embryonic development and tissue formation. Given that the protein produced by FOXM1 can transmit signals along the Wnt pathway, the new data indicate that the cooperative work of FOXM1 and Wnt pathway may lead to the subsequent proliferation of meningiomas. Hypermethylation may be an early trigger for the formation of aggressive meningiomas.

Raleigh said that future work needs to find out which genes FOXM1 activates to drive meningioma growth, and block these targets with clinical therapies. It is hoped that there will be drugs to stop the pathogenesis of brain tumors in this pathway as soon as possible and benefit the majority of cancer patients.

Subscribe To Our Newsletter

Get updates and never miss a blog from Cancerfax

More To Explore

Risk of developing secondary tumors following CAR-T cell therapy is minimal - A Stanford Study
CAR T-Cell therapy

Risk of developing secondary tumors following CAR-T cell therapy is minimal – A Stanford Study

CAR-T cell therapy, a groundbreaking cancer treatment, carries a risk of developing secondary tumors. This occurs due to the therapy’s potential to cause genetic mutations or alter the immune system’s regulation. Secondary malignancies can arise from these changes, presenting a significant long-term risk for patients. Continuous monitoring and research are crucial to understanding and mitigating these risks, ensuring safer outcomes for those undergoing CAR-T cell therapy.

Seattle Children's Hospital to Start CAR T-Cell Clinical Trial for Pediatric Lupus Patients
CAR T-Cell therapy

Seattle Children’s Hospital to Start CAR T-Cell Clinical Trial for Pediatric Lupus Patients

Seattle Children’s Hospital is launching a groundbreaking CAR T-cell clinical trial for pediatric lupus patients. This innovative approach harnesses the body’s immune cells to target and eliminate lupus-affected cells, offering new hope for young patients with this autoimmune disorder. The trial represents a significant advancement in lupus treatment, aiming to improve outcomes and reduce long-term complications for children suffering from this challenging condition.

Need help? Our team is ready to assist you.

We wish a speedy recovery of your dear and near one.

Start chat
We Are Online! Chat With Us!
Scan the code
Hello,

Welcome to CancerFax !

CancerFax is a pioneering platform dedicated to connecting individuals facing advanced-stage cancer with groundbreaking cell therapies like CAR T-Cell therapy, TIL therapy, and clinical trials worldwide.

Let us know what we can do for you.

1) Cancer treatment abroad?
2) CAR T-Cell therapy
3) Cancer vaccine
4) Online video consultation
5) Proton therapy